### Practice Test

For the following exercises, determine whether each of the following relations is a function.

$\left\{(2,1),(3,2),(\xe2\u02c6\u20191,1),(0,\xe2\u02c6\u20192)\right\}$

For the following exercises, evaluate the function $f(x)=\xe2\u02c6\u20193{x}^{2}+2x$ at the given input.

$f(a)$

Write the domain of the function $f(x)=\sqrt{3\xe2\u02c6\u2019x}$ in interval notation.

Graph the function $f(x)=\{\begin{array}{cc}x+1\phantom{\rule{0.8em}{0ex}}\text{if}& \xe2\u02c6\u20192x3\\ \phantom{\rule{0.8em}{0ex}}\text{}\xe2\u02c6\u2019x\phantom{\rule{0.8em}{0ex}}\text{if}& x\xe2\u2030\yen 3\end{array}$

Find the average rate of change of the function $f(x)=3\xe2\u02c6\u20192{x}^{2}+x$ by finding $\frac{f(b)\xe2\u02c6\u2019f(a)}{b\xe2\u02c6\u2019a}$ in simplest form.

For the following exercises, use the functions $f(x)=3\xe2\u02c6\u20192{x}^{2}+x\phantom{\rule{0.8em}{0ex}}\text{and}g(x)=\sqrt{x}$ to find the composite functions.

$\left(g\xe2\u02c6\u02dcf\right)(x)$

Express $H(x)=\sqrt[3]{5{x}^{2}\xe2\u02c6\u20193x}$ as a composition of two functions, $f$ and $g,$ where $\left(f\xe2\u02c6\u02dcg\right)(x)=H(x).$

For the following exercises, graph the functions by translating, stretching, and/or compressing a toolkit function.

$f(x)=\frac{1}{x+2}\xe2\u02c6\u20191$

For the following exercises, determine whether the functions are even, odd, or neither.

$f(x)=\xe2\u02c6\u2019\frac{5}{{x}^{3}}+9{x}^{5}$

Graph the absolute value function $f(x)=\xe2\u02c6\u20192\left|x\xe2\u02c6\u20191\right|+3.$

For the following exercises, find the inverse of the function.

$f(x)=\frac{4}{x+7}$

For the following exercises, use the graph of $g$ shown in Figure 1.

On what intervals is the function decreasing?

Approximate the local maximum of the function. Express the answer as an ordered pair.

For the following exercises, use the graph of the piecewise function shown in Figure 2.

Find $f(\mathrm{\xe2\u02c6\u20192}).$

For the following exercises, use the values listed in Table 1.

$x$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

$F(x)$ | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 |

Find $F(6).$

Is the graph increasing or decreasing on its domain?

Find ${F}^{\xe2\u02c6\u20191}(15).$